Neutral Transport Simulations of Gas Puff Imaging Experiments on Alcator C-Mod

D. P. Stotler, B. LaBombard¹, J. L. Terry¹, and S. J. Zweben

Princeton Plasma Physics Laboratory
Princeton University
Princeton, NJ 08543

¹MIT Plasma Science and Fusion Center Cambridge, MA 02139

Note: This poster is available on the Web at: http://w3.pppl.gov/degas2/

INTRODUCTION

- Tokamak edge ideal for comprehensive study of turbulence,
 - Accessible with probes
 - \Rightarrow directly measure n_e , T_e , and other properties.
 - Relatively low T_e facilitates use of atomic physics as basis for diagnostics.
 - Potential payoff great because edge sets boundary conditions for core transport,
 - * E.g., internal transport barriers, H-mode pedestal.
- Gas Puff Imaging (GPI) experiments designed to measure 2-D structure of edge turbulence,
 - Compare with 3-D nonlinear simulations.
 - And with turbulence measured by probes,
 - Puff neutral gas (e.g., D₂) near outer wall,
 - View with fast, high res. camera light from electron impact excitation of gas,
 - * Use sightline $\parallel \vec{B}$ to see radial & poloidal structure,
- Explore relation between images & plasma fluctuations with DEGAS 2 neutral transport code,
 - Straightforward because puff does not perturb plasma,
 - Emitted light brighter than background,
 - Material surface interactions should not be important.
- Experimental presentation: O-02 J. L. Terry et al.

Fig. 1 - Zweben APS '01

Fig. 2 - Zweben / APS '01

DESCRIPTION OF DEGAS 2 SIMULATIONS

- Alcator C-Mod Geometry:
 - Start with outline of vacuum vessel,
 - * Including gas puff nozzle & surrounding structures.
 - EFIT equilibrium for time of interest ⇒
 - * 2-D plasma mesh set up using DG & Carre,
 - * Bunch surfaces & grid points to get resolution3 mm or smaller in region of interest.
 - Divide puff region into ~ 3 mm triangles using Triangle.
- Simulations 2-D axisymmetric for now,
 - Output is averaged over toroidal angle.
 - \Rightarrow poloidal plane variation of photon emission rates.
 - Plan to add toroidal resolution ⇒
 - * Can directly simulate fast camera views,
 - * Quantitative comparison of image intensity,
 - * Evaluate toroidal spatial averaging.

DEGAS 2 Geometry for C-Mod Shot 1010622

- Simulations assume steady-state.
 - Compare time scales:
 - * Autocorrelation time for turbulence = $10 20 \mu s$,
 - * Time for 3 eV D to travel across cloud = 1 μ s (2 cm),
 - * Timescale for emission of D_{α} photon $=1/A_{3\rightarrow2}=0.02~\mu\text{s},$
 - * Note that camera exposure times = 2 μ s (60 frame/s) or 4 μ s (5 \times 10⁶ frames / s),
 - ∗ ⇒ assumption of stationary plasma OK.

• Physics:

− D₂, D₂⁺ dissociation, including

*
$$e + D_2 \rightarrow e + D(1s) + D(1s)$$

* $e + D_2 \rightarrow e + D(1s) + D^*(n = 3)$
* $e + D_2 \rightarrow 2e + D_2^+$
* $e + D_2 \rightarrow 2e + D(1s) + D^+$
* $e + D_2^+ \rightarrow 2e + 2D^+$
* $e + D_2^+ \rightarrow e + D(1s) + D^+$
* $e + D_2^+ \rightarrow e + D^+ + D^*(n = 3)$
* $e + D_2^+ \rightarrow D(1s) + D^*(n = 3)$

- D + D⁺ elastic scattering (i.e., charge exchange),
- $-D_2 + D^+$ elastic scattering,
- e + D ionization,
 - * "Multi-step", i.e., collisional-radiative model.
- Neutral-neutral collisions not included,
 - * May not be negligible,
 - * Need realistic neutral density to treat,
 - * Can only be computed in 3-D.

– Emission rate ($m^{-3} s^{-1}$) written as:

$$S_{\mathrm{D}_{\alpha}} = \sum_{j=\mathrm{D},\mathrm{D}_{2},\mathrm{D}_{2}^{+}} n_{j} f_{j}(n_{e},T_{e}),$$

* Where $n_j =$ ground state atom & molecule density,

$$f_D = \frac{n_D(n=3)}{n_D(n=1)} A_{3\to 2},$$

- $* [n_D(n=3)/n_D(n=1)](n_e,T_e)$ from CR model,
- st Largely determines n_e , T_e dependence of f_D .

$$f_{D_2}, f_{D_2^+} = n_e \sum_{k} \langle \sigma v \rangle_k(T_e),$$

- * k = reactions leading to n = 3.
- All puffs are 300 K with cosine distribution,
 - * Examined sensitivity in preliminary runs,
 - * Run with $(\cos \theta)^4$ distribution,
 - * One with 150 K puff.

• Plasma profiles:

- All are taken from measured data mapped to midplane,
- Assume constant on a flux surface,
 - * In triangulated region, estimate $\rho=$ distance between zone center & nearest flux surface mesh zone.
- Assume $n_i=n_e$, $T_i=T_e$.

Scanning Probe Data from C-Mod Shot 1010622006, 700 ms

Compare DEGAS 2 Result with Experimental Data Radial Slice at Z = -0.034 m

Peak Location & Width of Simulated Emission Insensitive to Details of D₂ Distribution

⇒ Vertical extent can be affected

C-MOD RESULTS

- Alcator C-Mod shot 1010622006 at 700 ms.
- Baseline computed with time-average plasma profiles,
 - -10-20% of atoms in cloud undergone reflection,
 - "CX fraction" have had a CX,
 - Rest from dissociation ⇒ ballistic trajectories.
 - $\Rightarrow \sim 50 -65\%$ of D emission
- At peak, molecular D_{α} s contribute $\sim 40\%$,
 - < 10% for $R \lesssim 0.9$ m.
- Compare with time-average experimental GPI images,
 - Emission peak near nozzle not seen experimentally,
 - Probe data assumed constant for R > 0.91 m,
 - Nozzle peak $\downarrow 10^{-2}$ if $T_e < 2.5$ eV
 - Or if $n_e < 3.6 \times 10^{16} \text{ m}^{-3}$,
 - Both consistent with exponential extrapolation of probe data.

DEGAS 2 Baseline

Fraction of D_{α} Due to Atoms

- Impose 2-D perturbation on n_e and T_e ,
 - Important to understand relation between spatial variation in emission & underlying plasma fluctuations,
 - Consider ad hoc perturbation:

$$n'_e(R, Z) = n_e(R, Z) \left[1 + \frac{1}{2} \sin(\frac{\pi Z}{0.01})\right] \times \left\{1 + \frac{1}{2} \sin\left[\frac{\pi (R - R_{\text{sep}} + 0.0035)}{0.005}\right]\right\},$$

- where:
 - * The 1/2 factors make this a 50% perturbation,
 - \cdot Factor ranges from 0.25 to 2.25.
 - * 2 cm wavelength for poloidal ($\sim Z$) variation,
 - Typical size of observed emission structures.
 - * Used only 1 cm in R because of limited radial width,
 - · 0.0035 shift so innermost data point unchanged.
- Try same perturbation on T_e ,
 - * Only difference: T_e bound between 5 and 100 eV.

2-D Perturbation to Electron Density

2-D Perturbation to Electron Temperature

Effect of 2-D Perturbation Normalized to Unperturbed Value Vertical Slice

Effect of 2-D Perturbation Normalized to Unperturbed Value Radial Slice

- Both simulations shows same 2-D structure,
- → wavenumber spectrum at least similar to that of plasma turbulence,
 - Expect autocorrelation function
 & frequency spectra similar also,
 - Will subsequently investigate quantitatively.
- Ratio of perturbed / unperturbed emission $\neq n_e'/n_e$ because $\partial \ln f_{\rm D}/\partial \ln n_e$, $\partial \ln f_{\rm D}/\partial \ln T_e < 1$.
- Further complicated by molecular contributions,
 - $*~f_{
 m D_2}$ and $f_{
 m D_2^+} \propto n_e$,
 - * T_e dependence not simple,
 - * Effective scaling varies radially.
- ullet Simple interpretation of GPI: image patterns $\propto n_e'/n_e$,
 - And insensitive to T_e ,
 - Valid only if $n_e \lesssim 10^{18}~{\rm m}^{-3}$ and $T_e \gg 10$ eV,
 - Not the case here!
 - $\Rightarrow n_e$, T_e dependence of $S_{\mathrm{D}_{\alpha}}$ not different enough to infer perturbation amplitudes,
 - Would be simpler if n_e , T_e in phase.

$n_e^{}$, $T_e^{}$ Dependence of $D_a^{}$ Emission Rate Contained in Ratio of n=3 Density to n=1

Scaling of $f(n_e, T_e)$ Varies Across Radial Profiles of 1010622

Shadow Fraction

- Above focussed only on effect of perturbation on f_j ,
- They also impact $n_j!$
- "Shadowing effect": ionization caused by local n_e , T_e peak reduces light at smaller R.
- Compare images with and without shadowing,
 - "With" shadowing is as above,
 - To eliminate, use perturbed f_i and unperturbed n_i ,
 - "Unshadowed" clearly shows n_e perturbation structure,
 - Shadowed image smeared out,
 - * Due to n_i reductions by n_e peaks,
 - st And n_j increases by n_e minima.

Runs with Electron Density Perturbation Shadowing:

Estimate by computing:

$$F_s = \left[\sum_j (n'_j - n_j)f'_j\right] / \sum_j n_j f_j,$$

- Where prime indicates perturbed value.
- Evaluate separately for both "perturbed" simulations.
- Structure is complicated!
- Main observations:
 - 1. $|F_s| \gtrsim 0.5$ in many places \Rightarrow too large to ignore in GPI analysis.
 - 2. Most of F_s due to molecules,
 - Analogous quantity based on atoms only ≤ 0.2 .
- \bullet To understand F_s look at radial slices,
 - -Z = -0.034: peak in n'_e/n_e ,
 - -Z=-0.025: at nozzle & a minimum in n_e^\prime/n_e .
 - Compare with $1 n_e'/n_e$,
 - * $1 n'_e/n_e < 0 \Rightarrow$ local $n_e >$ unperturbed value,
 - * $1 n'_e/n_e > 0 \Rightarrow$ local $n_e <$ unperturbed value,
 - * T_e perturbation differs at edges.
 - $-F_s < 0 \Rightarrow n_i$ locally reduced,
 - * F_s drops are in "shadows" of largest n'_e/n_e .
 - $-F_s > 0 \Rightarrow n_j$ locally increased,
 - * $F_s > 0$ at Z = -0.025 since n_e modulation near min.,
 - * Not so in perturbed T_e case due to smaller dissociation rate & strong T_e dependence of f_i .

Shadow Fraction with Density Perturbation

Shadow Fraction with Temperature Perturbation

Shadow Fraction Significant

Radial Slices

CONCLUSIONS

- DEGAS 2 simulations show that spatial variation of D_{α} emission reflects that of n_e , T_e turbulence.
- ullet But, n_e , T_e dependence of emission rate complicated,
 - \Rightarrow no simple scheme to get plasma fluctuations.
- Contributions from molecules significant,
 - Further complicating n_e , T_e dependence,
 - Densities significantly affected by perturbation.
- ⇒ will need neutral transport code to interpret GPI,
 - Must do careful benchmarks first,
 - To verify these conclusions,
 - Validate atomic & molecular physics models.